An Sqp Method for the Optimal Control of Large-scale Dynamical Systems
نویسندگان
چکیده
We propose a sequential quadratic programming (SQP) method for the optimal control of large-scale dynamical systems. The method uses modified multiple shooting to discretize the dynamical constraints. When these systems have relatively few parameters, the computational complexity of the modified method is much less than that of standard multiple shooting. Moreover, the proposed method is demonstrably more robust than single shooting. In the context of the SQP method, the use of modified multiple shooting involves a transformation of the constraint Jacobian. The affected rows are those associated with the continuity constraints and any path constraints applied within the shooting intervals. Path constraints enforced at the shooting points (and other constraints involving only discretized states) are not transformed. The transformation is cast almost entirely at the user level and requires minimal changes to the optimization software. We show that the modified quadratic subproblem yields a descent direction for the l1 penalty function. Numerical experiments verify the efficiency of the modified method.
منابع مشابه
Using Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem
In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملOptimal control of switched systems by a modified pseudo spectral method
In the present paper, we develop a modified pseudospectral scheme for solving an optimal control problem which is governed by a switched dynamical system. Many real-world processes such as chemical processes, automotive systems and manufacturing processes can be modeled as such systems. For this purpose, we replace the problem with an alternative optimal control problem in which the switching t...
متن کاملDetermination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملInterior point SQP strategies for large-scale, structured process optimization problems
Successive Quadratic Programming (SQP) has been the method of choice for the solution of many nonlinear programming problems in process engineering. However, for the solution of large problems with SQP based codes, the combinatorial complexity associated with active set quadratic programming (QP) methods can be a bottleneck in exploiting the problem structure. In this paper, we examine the meri...
متن کامل